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The integral (l), or in generalized, dimensionless form (5), is discussed with respect to 
thermal activation analysis. In this field of application it is appropriate to use y = kT/E as the 
independent variable, which is physically restricted to values y < 0.1. The second parameter r, 
attributed to a minor correctional temperature dependence of the frequency factor, is 
considered as a family parameter. For the evaluation of activation energy from experimental 
glow curve data a special factor within the integral, called slope factor q,(y), is required to 
high accuracy, For this special factor intrinsic recurrence relations with respect to r are given 
so that numerical basis values for r~,,(y) allow the calculation of t],(y). Some points for qa(y) 
are tabulated to an accuracy 9D. These points compare favourably with the rational approx- 
imations given by various authors, and the derivation of some modified new approximations, 
designed for relative accuracies of ~10~~ to 10m3. For numerical determination of q,,(y), 
where 0 < y < &, the algorithmic approximations v,(y) (Table I) and formulas VI, II, V, and 
IV (Table II) in the accuracy range lo-’ to 10-l are recommended. In the range 10-l the 
semi-empirical formulas (Table V) are sufficiently accurate, especially q$(y; A’) and 
q$(y; B’). 0 1985 Academic Press, Inc. 

INTRODUCTION 

Recent interest in a highly accurate, rational computation of the integral 

I 
T 

T” . eeEIkT’ a dT’ = F(T; E, r) - F(T,; E, r) 
3‘0 

can be observed [l-13]; T-temperature, k-Boltzmann-constant, E-activation 
energy. This interest is connected with improved automatization, exactness of 
apparatus, and experimental developments in the field of glow curve analysis as well 
as for similar thermostimulated physical, electronical, and chemical kinetic processes. 

In thermoanalytical experiments a reaction is systematically enhanced by steadily 
raising the temperature in order to locate the temperature region where traceable 
reaction progresses with a maximum of the reaction velocity at a distinct F, followed 
by an exhaustion of still unreacted partners. In the result, the following kinetic 
parameters are estimated quantitatively: 
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E-activation energy, 
K-frequency factor, 
l-kinetic order, and 
r-temperature exponent of the frequency factor. 

The corresponding differential equation is 

-dC/dT= (Kdq) , C’(T/T>’ a eeEIkT; C(To) = Co, (2) 

C-concentration of reactants, q = dT/dt-heating rate. In previous literature, except 
[ 1, 121, only the case r = 0 has been considered. A more general solution will now be 
derived. 

From a data plot C(T, q) under these thermostimulated conditions the value of the 
activation energy can be determined by means of a well-known integral method 
[14-161 leading to a line of the “concentration” integral versus reciprocal 
temperature with the slope 

d 41/W (-l::T’$) = d;ilg) = - $,E) . (3) 

The slope factor, q,(kT/E), is very close to unity and varies extremely slowly and 
montonically as the argument y 3 kT/E increases. This factor completes integral (l), 
namely, 

F(T;E,r)=q,.e- E/kT . kT2+‘/E = tlr. y2 . dF/dy. (4) 

Several values of qO(y), significant to 9D, are tabulated for 0 < y < 0.5 (column 4, 
Table I). 

The usefullness of the special function qr(y) will be discussed with respect to 
thermal analysis. Corresponding recurrence relations and inequalities as well as likely 
approximations will be proposed. Relations to other special and tabulated functions 
[17-281 will be shown. 

Before going into a detailed description of the special function q,(y) a few words 
on the philosophy of approximations in view of the availability of high speed 
computing machinery shall be cited from the preface of Luke’s “Mathematical 
Functions and Their Approximations” [ 211: 

To impress tables in the memory of a computer and then program for table look up and inter- 
polation is not economical. A computer requires efficient algorithms and schemes for the 
evaluation of functions on demand. Numerical values of functions are but a facet of the 
overall problem. We desire approximations to complete functions and their zeros, to simplify 
mathematical expressions such as integrals and transforms, and to facilitate directly the 
mathematical solution of a wide variety of functional equations such as differential equations, 
integral equations, etc. So the main thrusts are on the development of analytical expansions 
and approximations of functions for universal use. 
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And especially for polynomial and rational approximations cited striking virtues are 
“that they have better convergence properties than their Taylor series counterparts,” 
that they “satisfy simple recursion formulas, which can be used in the forward 
direction to generate values of the polynomials,” and that they “give rise to two-sided 
inequalities for these functions.” 

PHYSICAL BACKGROUND AND PARAMETER RANGE 

Reactions always take place at temperatures T e E/k, with physical dimensions: E 
in electron volts, T in degrees Kelvin, at: T[K] < 11604.5 . E[eV]. At very low 
temperatures the reaction is “frozen in.” Depending on the sensivity of measuring 
equipment certain reactions can be traced when T is raised to some (& a.. &) . E/k. 

c Maximum velocities are reached at TN ($- ... *) . E/k; this moment is, to a minor 
part, also dependent on the amount of the frequency factor K,, but practically 
independent both on I and 1. A very rough estimate from the maximum condition is 

Elk 
‘= In (104K,/q) - 2 ln(ln(104K,/q)) ’ 

- ~ A reaction peak at T has a finite half-width [24,25] 

I 

so that for T < 0.85 m T, essentially no reaction occurs (but here are no mathematical 
difficulties). For T > 1.1 . T all reactants are exhausted and the reaction is finished. 

A ground value for K, in solid state reactions is the Debye frequency of that 
solid = 1O13-1O’4/s. Many reactions become perfect only after a large number of 
jumps of one or of all kinds of the reactants through the bulk of the material. Due to 
this retardation K, can be as low as K, z lo5 e-e 10” ... 10” per second [24]. In all 
these cases, we limit our interest to values 0 < y < & or at least to y < -&-. 

In the practice of thermal analysis single reaction processes can seldom be 
observed, mostly a complex spectrum appears. Some processes can proceed 
simultaneously or consecutively. They can influence different measureable properties 
with different weights. It is possible that one or all kinetic parameters are not 
represented by discrete values, whereas any underlying distribution for these 
parameters may not be known. Here our concern is with the idealized case of a single 
process with discrete kinetic parameters and restricted to small y. 

Today a relative accuracy of the order 1O-2*o’5 is often required for the deter- 
mination of the activation energy from the analysis of kinetic reaction data; ten years 
ago this level was of the order 5-10%. Different analytical approximations for the 
function q,(y) with acuracies up to 10P6, to be considered in this note, offer 
theoretical advantages for future developments. 
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Due to an internal compensation the relative error obtainable for the frequency 
factor is predetermined by AK/K = l/y. AE/E. When a parameter evaluation is 
started from experimental data the most sensitive parameter is activation energy and 
therefore qr is directly required in (3). The integral (1) or (5) itself is not necessary in 
any direct sense, although such claims are overemphasized as an unresolved problem 
in many thermoanalytical publications. 

The temperature dependence of the reaction rate is mainly expressed by the 
exponential Arrhenius term exp(-E/kg; through the preexponential factor T’ a 
minor correctional temperature influence is taken into account. In some reaction 
models this factor represents temperature dependence of reaction cross sectiona, or 
reactants mobilities. Usually the power r is an integer or half-integer value. Because it 
reflects only a minor additional temperature influence, r is not much different from 
zero, e.g., -3 < r < +3. In this sense r is not treated as a variable, but as a family 
parameter. 

TABLE 

Comparison of Likely Approximations q$(yJ to 

For I 
[17,4] 

I red II 
(see text!) 

III IV 

(6) 
vo.3.3 

X approximation: 

main error term: -6~’ 720~’ 

1 t 7,5y + 3,5y2 1 t 13y + 36y2 + 6y3 
1 t 9.5~ t 16.5~~ + 9y4 

q$” t 2208OOys 
1 t 15y+60y2+60y 

aJ -6.39 -6.40 0.0 0.0 0.0 
100 -1.86 -2.01 0.00 0.00 0.00 

90 -1.56 -1.72 0.00 0.00 0.00 
80 -1.23 -1.40 -0.01 -0.00 -0.00 
70 -0.85 -1.05 -0.0 1 -0.00 -0.00 
60 -0.45 -0.66 -0.01 0.00 0.00 
50 -0.03 -0.27 -0.03 -0.00 0.00 

- 

45 0.18 -0.06 -0.03 0.01 0.01 
40 0.34 0.10 -0.08 -0.01 0.08 
35 0.48 0.25 -0.16 -0.03 0.00 
30 0.55 0.35 -0.34 -0.09 0.01 
25 0.51 0.39 -0.85 -0.29 0.03 
20 0.32 0.40 -2.52 -1.05 0.12 
15 -0.01 0.59 -9.98 -0.48 0.61 

10 -0.21 1.99 -63.96 404.65 5.07 
8 -0.11 3.53 -169.51 3941.95 15.01 
6 0.08 5.95 -562.96 60790.59 55.58 

Note. Represented are the relative deviations D = Aqt/qO = (q$ - qo)/qO in parts per million @pm). 
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ON CALCULATIONAL PROCEDURES 

Values in the tables are significant to the number of digits tabulated. Occasional 
calculations were made with integer values for the indicated x; (y) means a rounded 
value of y = l/x. In all analytical representations the description by the small 
unrounded quantity y is prefered (not x- as was often done for other approximations 
[l-lo, 12]-see later) to emphasize the convergence tendencies. 

For systematic comparisons of various good (see Table II) and some less 
appropriate (Table III) approximations, relative deviations from the exact values are 
given in parts per million (in ppm). A thorough error estimation is required. In [4] 
Jenkins claims, that a given rational approximation (originally from [ 171) to the Airy 
function (in this note later compared as approximation formula I) has for the integral 
F(T; E) an error limitation 1s 1 < 2 . lop8 for all x > 1. Notice that for all x > 15 the 

(3) with a Decreasing Number of Accounted Terms 

1 + 1Oy t 18~’ 1 t6yt2y2 1+4y 1 +Y 
I+ 12y t 36~’ + 24~’ 1 t 8y t 12~’ 1$6Y$6Y2 1 t 3.v 

-144y6 48~’ -12y4 6~’ 

1 

1 t 2y 
=l-2y 

-2y2 -6~’ 

0.0 0.0 0.0 0. 
0.00 0.01 -0.10 6. 
0.00 0.01 -0.15 7. 

-0.00 0.01 -0.25 11. 
-0.00 0.02 -0.40 15. 
-0.00 0.05 -0.72 24. 
-0.01 0.10 -1.42 41. 

-0.00 0.18 -2.09 55. 
-0.02 0.29 -3.24 76. 
-0.04 0.53 -5.26 110. 
-0.08 1.06 -9.15 169. 
-0.21 2.36 -17.42 278. 
-0.64 6.15 -37.55 506. 
-2.56 20.25 -97.68 1072. 

-15.83 98.85 -347.43 2548. 
-40.21 224.33 -667.93 5010. 

-123.42 607.48 -1472.78 9622. 

0. 0. 
-189. -589. 
-231. -725. 
-291. -915. 
-376. -1192. 
-505. -1615. 
-714. -2313. 

-871. -2844. 
-1085. -3583. 
-1391. -4652. 
-1847. -6284. 
-2572. -8955. 
-3825. -13787. 
-6289. -23955. 

-12248. -51758. 
-17323. -78741. 
-26436. -134610. 

581/57/l-3 
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value of the integral is smaller than this error limit, decreasingly by several orders of 
magnitude. The relative accuracy becomes less accurate -6 . lop6 for very small y 
(see Table II, column 2). 

THE SPECIAL FUNCTION qr(y) 

For generalization of (1) we consider in dimensionless form with y 3 kT/E, 

qy; r) = jy y” . ,-l/Y’ . dy’ = q,(y) .y2+r . e-‘/Y 

and, equivalently, 

rr(y) +.g * jYy" . e-'/Y' . dy'. 
0 

Equation (6) is a solution of a Riccati-type differential equation of first order 

drll+ 1 +(2+r)y 

dy Y 
. ?&. 

Y 

(5) 

(6) 

(7) 

From (6) it can be seen that q,(O) = 1 and V-J y) = 1. The qr satisfy the following 
recursion formulas 

and rt -3= 1 +y; q-4= 1 + 2y + 2y2; and so on. A rough two-sided enclosure is 
estimated to be for y z 0, 

1 + (,: 2) y < qLy) < 1 + (rlt 1) y 

and 

(9) 

(10) 

and 

. ..<?o<r-1<tl_*-l<<r--3<‘..’ 

Within the range y < &, q,(y) is a positive, monotonically decreasing function for all 
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0.00 0.02 0.04 0.06 0.08 R.10 
I = KIIE 

FIG. 1. Special function q,(y)for O<y(O.l and r=-3 . . . +3. 

r > - 2 and an increasing function for r < - 2, as can be seen in Fig. 1. Some 
numerical values for the case t = 0 are given both for the integral I(y; 0) and for the 
slope factor in Table I, columns 3 and 4. 

SEMICONVERGENT POLYNOMIAL APPROXIMATION 

Substituting qr w C,, 19, . y ” in Eq. (7) leads to the known [ 14,15 ] 

?/$N’(y)=l+ 5 (-y)“*(n+l+r)! (11) 
n=l 

This is an alternating, semiconvergent series. An approximation to the finite, positive 
integral (5) by (11) is achieved by restricting N ‘Y l/y - 2. Here it is of great impor- 
tance, that our interest is in small y (error analysis see in [3]). For y < & even with 
few terms N’ < N a high accuracy can be obtained. For an example of the 
convergence and the alternating character of first finite, truncated series v~‘(JJ) see 
Table I, columns l&13 for N = 2-5. Given are the relative deviations 
LI~$/Q, = (r$ - Q&+, from the exact value qO(y) in ppm. 

For polynomial interrelation use 

qpyy> = ?&N’(y) + 5 (-y)” * [ =yy - (n + l)!] . (12) 
It=1 
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Although the polynomial representation (11) is an oscillating function with N zeros, 
all these zeros are well outside the appointed region y < &. Within this region 
approximation (1 I), due to 

drl,- 
du --(r+2)+2@+2)@+3)y-+..a, 

confirms the monotone slope of r,(y). 
Two simple effective approximations to qO(y) and inequalities are 

?A = d& < d2'; 
1 

'Is = 
\/I + 4y + 8y3 > “‘) 

with 
qC3) < q 0 B < q < fj 0 A < rf2) 0 - 

A good approximation to q. with dy,*/q, < lop5 for all y < 0.05 is 

1 

\/I + 4~ + 6y3 

(see columns 5-9, Table I). 

RATIONAL APPROXIMATION 

Rational approximations converge sooner than polynomial approximations. For a 
quotient: 1 divided by a denominator, consisting in a finite number of polynomial 
terms, i.e., l/C, cny”, a close approximation by a corresponding Taylor series coun- 
terpart requires a greater number of terms (Q’ > Q), theoretically an infinite number 
of terms. Let 

VYYY) = 1 + 2 qr *Y” (%#,r from (1 l)), 
n+1 

be approximated by 

cp’=o bp,r . Y” 
qr3.Q = -j~2=~ c,,, . yq ' (13) 

where bo,r=co,r= 1; P<N, Q<N. 
Then for increasing p the following equations for matrix elements must be satisfied: 

bear - c~,l= i an,r * cp--n,r = apvr + ‘2’ an,* . cp-,,,. 
n=o n=o 

In an approximation step (P) the pair of coefficients b, and cp is determined, but only 
up to their difference b,, - cp, by all the preceding correct cp, (p’ < p). One of these 
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two parameters bp or cP can now be chosen arbitrarily. This can be continued further 
with freedom to fix one of the next coefficients bp+, or c,,+i arbitrarily. In this sense 
there does not exist an unambiguous rational approximation to q,(y). 

To reduce the number of coefftcients and terms for rffN) up to N coefficients can be 
prefixed, for instance-but not necessarily+qual to zero. The rest are then deter- 
mined by the set of linear equations (14). Some resulting likely rational approx- 
imations are given in Table IV. 

For comparison and illustration the closeness of these approximations to q(y) is 
included in Table II; only the case r = 0 is tabulated. In practice for a definite 
demand on accuracy and any limited range y one can choose the corresponding 
formula, which leads to sufficient accuracy and with minimal required calculational 
effort. 

RELATION OF q,(y) TO OTHER PUBLISHED RATIONAL APPROXIMATIONS 

Our slope factor is correlated to 

V,(Y) = $ * E,,,WY)~ (15) 

where E, represents the well-known function 

For the exponential integral, i.e., m = 1 and r = - 1, various tables are available. Also 
some rational approximations to E,(x) are given [ 17-241 in the form 

usually with o. = PO = 1. 
Only one relation [ 17,4] will be compared explicitely, illustrating both accuracy 

and redundancy. This approximation formula I is characterized by n’ = 4 with the 
following coefficients: 

n 
for Formula I [ 17,4] 

8" 8, - a, 
for Ireduced 

B. - an P" 

0 1. 1. 0. 0. 1. 
1 8.57332 87401 9.57332 23454 0.99999 36053 1.0 9.5733 
2 18.05901 69730 25.63295 61486 7.57393 91756 7.5739 25.633 
3 8.63476 08925 21.09965 30827 12.46489 21902 12.465 21.1 
4 0.26777 37343 3.95849 69228 3.69072 3 1885 3.7 4. 
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(corresponding deviations for formulas I and Ired- see Table II). In consequence of 
the recursion formula (8), 

qo(y)=$. l-$.Ei(Iiv) 
[ 1 

and, with a,, = &,, 

(16) 

(16’) 

The error of this approximation for small y equals 

For approximation I this leads to 

47 -= -6.4 - 1O-6 + 0.00062y - 0.021~~’ + - ..a , 
VO 

and particularly to 

Atlo* -c-4. lO-6 
VO 

= -2. 10-e 

for y = 0, 

for y = 0.01, 

in full agreement with Table II. 
From (16) the error propagation gives Ay, z x . A(E, ex/x). Hence the absolute 

error for qo(y) (and the relative error due to r~ + 1) for the same rational approx- 
imation is x times greater than the corresponding error A(E, exp(x)/x). Only this last 
error is claimed [4] to be smaller than 2 . IO-‘. 

The relative accuracy for the determination of the integral Z(y; 0) is closely related 
to the relative accuracy of the evaluated qo(y) and is not equal to the accuracy of the 
approximation to E,(x). 

To get the desired accuracy of any approximation s*(y) it is sufftcient to evaluate 
every term in the polynomials p, . y” or co, - a,) y” accurately to within that error 
limit. In this sense all coefficients in formula I contain extra digits. Therefore these 
coefficients have been rigorously truncated to the values in the last columns (for 
I reduced). The resulting Aq*-deviations can be found in Table II, column 3, with no 
qualitative difference or disadvantage, especially for y < &. 

Starting from the numerical redundant formula I, a still simpler expression with 
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extremely truncated p, and (j?, - a,) in accordance with (14) and favourably with 
respect to (17) is 

rlo*(Y) = 
1 + 7.5y + 3.5y2 

1 + 9.5~ + 16.5~’ + 9y4 
(as formula II). 

Here the correct trend for extremely small y to ~(0) = 1 should be noticed-see 
Table II. 

There are further approximations to the integral I(y; 0) or to E(x) with decimal 
coefficients, but commonly less accurate. They all can be treated in the same way to 
obtain a unified form like (13) and (16’). From this unified form and from (17) due 
to the smallness of the accounted y it can be estimated, to what extent the accuracy 
of the coefftcients of the ascending power terms can be diminished. In practice this 
situation is not obvious; an unfortunate example is the proposal by Roeck [12], who 
did not give reasons for the special selection of his series coefficients (Table III). 

This note discourages any further use of such alternative approximation formulas, 
because there are the likely approximations according to (14) and compared in 
Table II, especially formulas IV, V, VI, and II, with integer-like coefficients and the 
minimal number of terms for a distinct required accuracy. 

Thermoanalytical results not obtained by our approximations should be reanalyzed 
for correctness of results. To promote such a revision for some often-used approx- 
imations their deviation from the correct v(y) is given in Table III for only a few 
argumental points y = A, &, &, and A. For some of the original versions a 
modified formula shows, that the same, or even a better approach, can be found by a 
likely simpler expression. Some indicated formula corrections, according to (14), 
remove obvious misprints in the corresponding original papers. 

SEMI-EMPIRICAL APPROXIMATION TO q,(y) 

Finally a very easy approximation will be demonstrated, which is suitable when an 
accuracy of the order A?,*/?, Y 0.1% only is required within a strongly limited region 
for the argument y. From known exact reference points in the vicinity of any given 
argument y a linear, quadratic, or hyperbolic approach is sufficient: 

%(Y) = 1 -AY +A’yZ (18) 

1 
= 1 +By-B’y2’ 

The resulting coefficients, for instance, 

(18’) 

A ‘(y. r )  = c%(Y) - 1 + (2 + 9Y , 
Y2 

for A =2 +r, 
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for the case r = 0 are given in Table IV; the relative shift of these coefficients is 
small. In the neighboring columns the errors (in ppm) of the approximations 
(18, 18’), are presented. 

For some test evaluation of experimental data these empirical approximations (18, 
(18’) give good estimates, much simpler and even more accurate than some formulas 
used previously in the literature (compare Tables V and III). 
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